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In this paper, we discuss the physical nature of the jump parameters that generally appear in the expres-
sion for the jump conditions at a fluid/porous interface. These jump parameters are generally thought of
as intrinsic interfacial properties, just like surface tension in the case of fluid/fluid interfaces. Based on a
two-step up-scaling analysis, we show that jump parameters can be interpreted as surface-excess quan-
tities. The value of a surface-excess quantity is shown to depend linearly on the position of the discon-
tinuous interface and is therefore not an intrinsic property. We propose a theoretical approach that
allows to introduce genuine intrinsic interfacial properties and to propose a best choice for the position
of the discontinuous interface. We show that these properties are tightly related to the definition of the
interfacial zone. This theoretical approach is successfully assessed on three important cases: a laminar
flow parallel to a fluid/porous interface, a turbulent flow perpendicular to a porous/fluid interface and
heat transfer perpendicular to a fluid/porous interface. It is believed that this approach is general enough
to be applied to any interfacial transport phenomenon.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction sue from a practical point of view [8,11]. These jump coefficients
In many applications, heat, mass and momentum transfer at the
interface between a porous medium and an adjacent free fluid re-
gion play a key role in the process. These transfers are generally
modeled through appropriate boundary conditions. The determi-
nation of the form of these boundary conditions is the subject of
many scientific contributions and different methodologies are used
to derive these boundary conditions. However, whatever the meth-
odology used, so-called jump coefficients appear in the expression
for these boundary conditions. For instance, in the case of the
momentum transfer of a laminar flow parallel to the fluid/porous
interface, Beavers and Joseph [2] introduced a jump coefficient a
that relates the derivative of the velocity to the slip velocity at
the interface:

du
dy
¼ affiffiffiffiffiffi

Kp
p ðuB � UDÞ ð1Þ

where u is the velocity in the direction tangential to the interface
whose normal is in the y-direction, Kp is the permeability of the
homogeneous porous medium, UD is the Darcy velocity in the
homogeneous porous medium and uB is the slip velocity at the
interface.

The theoretical determination of the value of these jump coef-
ficients remains a scientific challenge as well as an important is-
ll rights reserved.
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are very often interpreted or thought of as interfacial coefficients.
In this regard, they are often considered as intrinsic interfacial
properties. However, several authors noticed that these jump
coefficients can depend on the location of the interface; this is
in particular the case for the momentum transfer as pointed out
in [13,14,20,21]. This observation tends to reconsider the inter-
pretation of jump coefficients as genuine interfacial properties.
This issue is actually related to the definition of the interface that
separates the porous medium and the free fluid region. Indeed, by
definition, an interface is a mathematical surface of discontinuity,
possibly endowed with specific properties, called interfacial prop-
erties. Now, at the pore scale, the transition between the homoge-
neous porous medium and the free fluid region is all but sharp as
illustrated in Fig. 1. Thus, it is a priori difficult or even impossible
to define the position of the equivalent surface of discontinuity
unambiguously [2]. Because of this ambiguous definition of the
surface of discontinuity, the definition of the interfacial parame-
ters is also ambiguous.

The issue we address in this paper is the interpretation of the
jump coefficients that appear in the expression for boundary con-
ditions at a fluid/porous interface. It must be emphasized that our
goal is not to derive the form of these boundary conditions but is
rather to study the intrinsic nature of the jump coefficients that
necessarily appear in the expression for these boundary conditions.
In this paper, several issues are addressed. What is the definition of
a discontinuous fluid/porous interface? Should the value of the
jump parameters depend on the location of the interface? Is it pos-
sible to define intrinsic interfacial properties?
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Nomenclature

c mass fraction
Dh hydraulic diameter
Cs singular pressure drop coefficient
F volumetric free energy
F0 local contribution of the volumetric free energy
H�, Hþ boundaries of the homogeneous regions
k thermal conductivity
K permeability
Kp permeability of the homogeneous porous medium
p pressure
S mass source term
T temperature
u velocity
uB slip velocity
UD Darcy velocity
W double-well volumetric free energy
yM location of the discontinuous interface
yw location of center of gravity of the variable w

Special symbols
~wk w at the macroscopic scale in homogeneous region k

Greek symbols
a slip coefficient of Beavers and Joseph [2]
l0 specific free enthalpy at saturation
d thickness of the interface region
g continuous indicator function of the homogeneous

regions
k capillary coefficient
/ porosity
u conductive heat flux
q fluid density

Superscripts
/ex surface-excess quantity

Subscripts
wþ, w� constant asymptotic values of w outside the transition

zone
we double-well function related to w (see Eq. (11))
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Following [5,6,16], our analysis is based on three different
scales of description of the interface, as illustrated in Fig. 1. In par-
ticular, we introduce an intermediate level of description, denoted
the mesoscopic scale. This latter scale of description is obtained
after using an averaging volume that is the same as that used in
a

b

Fig. 1. The interface between a homogeneous porous medium and a free fluid region at d
(b) Volumetric solid fraction at the three different scales.
the homogeneous porous medium to obtain the classical Darcy
or Darcy–Brinkman equations for instance. It is worth noting that,
unlike the case of homogeneous porous media where the validity
of the closure relations can be proved under certain length-scale
restrictions, up to now, no formal approach exists to derive the clo-
ifferent scales of description. (a) Fluid/porous interface at the three different scales.
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sure relations within the interfacial region. Nevertheless, these clo-
sure relations can be postulated a priori and their validity can be
checked a posteriori. For instance, the transport coefficients at
the mesoscopic scale can be measured through volume-averaging
where the filter size is generally the one adapted to the homoge-
neous porous region [3]. After such a volume-averaging procedure,
the free-porous transition is a continuous transition zone across
which all physical variables encounter strong but nevertheless
continuous variations as illustrated in Fig. 1. The thickness d of
the interfacial transition zone is of the order of magnitude of the
size of the averaging volume. The introduction of the intermediate
mesoscopic scale might appear as a useless complex stage in the
analysis. However, it has an important advantage: it allows to
clearly dissociate the physical modeling part of the problem from
the discussion on the interfacial properties. For the purpose of this
paper, this allows to clarify the discussion on the nature of the
interface and of the interfacial properties. Thus, in this paper, we
focus on the second up-scaling, i.e., on the mesoscopic–macro-
scopic up-scaling. Indeed, in the first microscopic–mesoscopic
up-scaling, no difficulty related to the nature of the interface ex-
ists: the main difficulty is related to the physical modeling of the
system within the interfacial transition layer.

The paper is organized as follows. In Section 2, we remind the
interpretation of a jump parameter as a surface-excess quantity
and present some general features of such an interfacial property.
Given this general presentation, in Section 3, we discuss the defini-
tion of an interfacial zone and introduce an intrinsic interfacial
property, whose value is independent of the interface position. In
Section 4, our general theoretical analysis is applied to three partic-
ular cases: a laminar flow parallel to the interface, a turbulent flow
perpendicular to the interface and heat transfer perpendicular to
the interface. In the three cases, our approach allows to determine
(i) the corresponding boundary conditions and (ii) the intrinsic
nature of the corresponding jump parameters.

2. General presentation

2.1. A simple example

In this section, we briefly present how the form of boundary
conditions can be obtained by the analysis of interfacial processes
[9]. For the sake of simplicity, we consider the following one-
dimensional diffusion equation that is supposed to be valid at
the mesoscopic scale:

d2c
dy2 ¼ SðyÞ for H� < y < Hþ

where c is the mass fraction of a given species, y is the coordinate
normal to the interfacial region and SðyÞ is a source term, which
is supposed to reach significant values only within the interfacial
zone as illustrated in Fig. 2; H� and Hþ are the coordinates of the
boundaries of the physical system, respectively, in the porous re-
gion and in the free fluid region. A similar diffusion reaction prob-
lem has been studied in [23].
Fig. 2. Variation of the source term of mass across the interfacial zone.
At the macroscopic scale far from the interfacial zone, where
S ¼ 0, the following diffusion equation holds in each homogeneous
region k 2 f1; 2g:

d2~ck

dy2 ¼ 0 ð2Þ

where ~ck represents the mass fraction at the macroscopic scale in
the region k. By construction of the macroscopic-scale model, it is
not intended to capture small-scale variations. Thus, it is supposed
that Eq. (2) hold up to the discontinuous interface.

By subtraction of the macroscopic and mesoscopic models in
the entire domain, one gets:

d2ðc�~c1Þ
dy2 ¼ SðyÞ for H� < y < yM

d2ðc�~c2Þ
dy2 ¼ SðyÞ for yM < y < Hþ

8<: ð3Þ

where yM is the location of the equivalent surface of discontinuity at
the macroscopic scale. It must be emphasized that, in general, there
is an infinite number of possible positions yM. However, intuitively,
the discontinuous interface should be located within the interfacial
transition zone where SðyÞ encounters strong variations. This issue
will be discussed more thoroughly in the remainder of this article,
but one must keep in mind that yM is a priori defined with some
arbitrariness and that one should seek for criteria to choose the
most relevant interface position.

By integration of Eq. (3), first on ½H�; yM� and then on ½yM; Hþ�,
one gets

d~c2

dy

����
yM

� d~c1

dy

����
yM

þ dðc � ~c2Þ
dy

����
Hþ
� dðc � ~c1Þ

dy

����
H�

¼
Z yM

H�
SðyÞdyþ

Z Hþ

yM

SðyÞdy

The last two terms of the left-hand-side of the above equation van-
ish. Indeed, by construction, the macroscopic solution ~cðyÞ is sought
for so that it is equal to the mesoscopic solution cðyÞ within each
homogeneous region and in particular at their boundaries H� and
Hþ. This yields:

d~c2

dy

����
yM

� d~c1

dy

����
yM

¼
Z Hþ

H�
SðyÞdy ð4Þ

Mathematically, this equation is a boundary condition at the inter-
face located at yM that couples the solutions of the macroscopic
problem (i.e., ~c1ðyÞ and ~c2ðyÞ). The right-hand-side is a so-called sur-
face-excess quantity, denoted Sex. The interfacial source of mass, that
exists at the mesoscopic scale in the transition region, manifests it-
self at the macroscopic scale through this surface-excess source of
mass. From a physical point of view, the boundary condition (4) is
thus interpreted as an interfacial mass balance equation. This
boundary condition is identical to that presented in [23].

The above analysis shows that, once the model at the meso-
scopic scale has been determined, the form of the corresponding
boundary condition at the interface can be determined following
the steps of the above development. Edwards et al. [9] show that
the above development is actually very general and can be applied
to any kind of balance equation and to any kind of interface geom-
etry (not necessarily planar as in our example). For the case of
fluid/porous interfaces, it has already been successfully applied
to laminar and turbulent flows [6,7].

It is worth noting that the meso–macro up-scaling presented in
this example shows that no length-scale restriction is required to
define the macroscopic model. Indeed, the only weak restriction
lies in the fact that it must be possible to define outer regions (that
can be small) where the macroscopic model holds. Once the mac-
roscopic models and the corresponding outer regions can be de-
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fined, jump conditions and corresponding jump parameters can be
defined as well, without any length-scale restriction.

2.2. Surface-excess quantities

Jump parameters that appear in the expression for boundary
conditions at a fluid/porous interface are generally interpreted,
more or less wittingly, as interfacial physical properties, just like
surface tension in the case of liquid/gas interfaces. In this sec-
tion, we show that, in general, the value of a surface-excess
quantity depends on the location of the interface yM. Surface-ex-
cess quantities, and thus jump parameters, are therefore not
intrinsic physical interfacial properties since their value depends
on the choice of yM.

Let us consider a volumetric physical variable w at the meso-
scopic scale that varies continuously across the interfacial zone
and reaches uniform values wþ and w� within the surrounding
homogeneous regions as illustrated in Fig. 3(a). At this scale, the
total amount of w in the system is

Wmeso ¼
Z Hþ

H�
wðyÞdy

However, at the macroscopic scale, the variations of w within the inter-
facial zone are not captured and the interfacial zone is replaced by a dis-
continuous interface. Thus, at this scale, the total amount of w is

Wmacro ¼
Z yM

H�
w� dyþ

Z Hþ

yM

wþ dy

These two amounts are not necessarily equal. The difference
ðWmeso �WmacroÞ corresponds to the amount of w that is not ac-
counted for by the macroscopic model and that must therefore be
added so that the macroscopic and mesoscopic models are equiva-
lent. This amount, denoted ‘‘surface-excess quantity”, is assigned to
the discontinuous interface (located at yM); it is represented by the
hatched area in Fig. 3(a):

wex ¼ Wmeso �Wmacro

¼
Z yM

H�
ðwðyÞ � w�Þdyþ

Z Hþ

yM

ðwðyÞ � wþÞdy ð5Þ
a

c

Fig. 3. Surface-excess quantity. (a) Graphical interpretation of wex. (b) Graphical
In three dimensions, a surface-excess quantity is a quantity per unit
surface area assigned to the interface. For instance, in the example
treated in Section 2.1, Sex represents a mass source per unit surface
area. It must be accounted for in the balance at the macroscopic
scale to recover the mesoscopic balance:Z

V1

w1 dV þ
Z

V2

w2 dV þ
Z

S
wex dS ¼ Wmeso

where Vk is the volume of the homogeneous region k and S is the
interface that separates the phases.

It is worth pointing out that the idea of assigning surface
quantities at a fluid/porous interface has already been proposed
in the literature and in particular in [15–17]. However, in these
works, the authors treat both up-scaling steps without focusing
in particular on the second one. However, it turns out that the
second up-scaling step raises specific issues regarding the nature
of the jump coefficients as shown in the remainder of this
paper.

2.3. Variation of a surface-excess quantity with the position of the
interface

Variations of the value of jump parameters on the location of
the interface have been reported in the literature [3,13,20,21] and
justified mathematically by Chandesris and Jamet [6]. In this sec-
tion, we go back to this result and present it in a more general
framework to explain this observed dependence using very sim-
ple arguments.

Graphically, Fig. 3(a) clearly shows that a surface-excess quan-
tity wex depends on yM. From Eq. (5), it is straigthforward to show
that wex can be expressed as follows:

wexðyMÞ ¼
Z Hþ

H�
wðyÞdy� ðwþHþ � w�H�Þ þ ðwþ � w�ÞyM ð6Þ

This expression shows that (i) wex depends linearly on yM and that
(ii) wex is independent of yM when wþ ¼ w�.

Thus, for any variable whose asymptotic values are different,
one should expect a linear dependence of the jump parameter on
the location of the interface. In the case of a laminar flow above
a porous medium, Chandesris and Jamet [6] show that the jump
b

interpretation of the center of gravity yw. (c) Linear dependence of wexðyMÞ.



ig. 4. Van der Waals model of capillarity: a diffuse interface model for liquid–
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nergy F0 (the slanting dashed line is the double-tangent) and of the corresponding
ouble-well function W as a function of the density.
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parameter that appears in the boundary condition for the velocity
at the interface is the surface-excess quantity ð/=KÞex, where / is
the porosity and K is the permeability. Fig. 7(a) clearly shows that
the asymptotic values of ð/=KÞðyÞ are different, which explains
why, in this case, several authors observed a dependence of the
jump parameter on the location of the interface.

In the general case where wþ–w�, the goal is to seek for true
interfacial properties that are independent of the location of the
interface. In this perspective, let us define the ‘‘center of gravity”
yw of the profile wðyÞ defined such thatZ yw

H�
ðwðyÞ � w�Þdyþ

Z Hþ

yw

ðwðyÞ � wþÞdy ¼ 0 ð7Þ

It can be shown that yw exists if wþ–w� (see Fig. 3)(b). We empha-
size that yw is an intrinsic property, in the sense that it depends only
on the profile of the variable w across the interfacial zone and is thus
independent of the position of the equivalent discontinuous inter-
face yM.

From Eq. (6) and (7), it is straightforward to express wex in the
following compact form:

wexðyMÞ ¼ ðwþ � w�ÞðyM � ywÞ ð8Þ

which is valid only if wþ–w�.
At this stage of the analysis, we showed that the value of a sur-

face-excess quantity corresponding to a variable w such that
wþ ¼ w� is independent of the position of the discontinuous inter-
face and can be thus considered as a true interfacial property. How-
ever, if wþ–w�, we showed that the corresponding surface-excess
quantity depends linearly on the position of the discontinuous
interface yM. We showed that, in this case, it is possible to define
the center of gravity yw whose value is independent of yM. Never-
theless, we are still unable to provide a definition of a surface
quantity that is independent of yM and that could thus be consid-
ered as an interfacial property. This issue is tackled in Section 3.

The most widely known interfacial property is certainly surface
tension. In the following section, we interpret surface tension as a
surface-excess energy and show how the difficulty related to the
interface position is solved. This analysis will be useful in the
remainder of the article to propose an interpretation of interfacial
quantities and a determination of intrinsic interfacial physical
properties.

2.4. Surface tension: a surface-excess energy

In this section, we briefly remind how the van der Waals theory
of capillarity allows to interpret surface tension as a surface-excess
quantity (e.g. [19]). Surface tension is a macroscopic interfacial
property coming from intermolecular forces at the microscopic
scale where the particles are described individually. Using a simple
mean-field approximation (e.g. [19]), it is possible to describe a li-
quid–vapor interface as a continuous transition zone where the
fluid density varies smoothly (see Fig. 4)(a); this corresponds to
the mesoscopic scale. At this scale, the volumetric free energy of
the fluid is the following:

F ¼ F0ðqÞ þ k
2
ðrqÞ2

where q is the fluid density, F0ðqÞ is a non-convex function (see
Fig. 4(b)) and k is a constant coefficient, called the capillary coeffi-
cient. It can be shown that the bulk phase densities q1 and q2 are
characteristic of the double-tangent of F0ðqÞ.

The excess free energy is given by

Fex ¼ F0ex þ k
2

dq
dy

� �2
 !ex
F
v
in
e
d

The last term does not depend on the position of the interface,
whereas F0ex

does because F0þ ¼ F0ðq1Þ–F0ðq2Þ ¼ F0�. Thus Fex

depends on yM whereas surface tension does not. In the van
der Waals theory, the function WðqÞ that represents the differ-
ence between F0ðqÞ and its double-tangent is then introduced
(see Fig. 4(b))

F0ðqÞ ¼WðqÞ þ F0ðq1Þ þ l0 ðq� q1Þ

¼WðqÞ þ F0ðq2Þ þ l0 ðq� q2Þ ð9Þ

where l0 is the slope of the double-tangent. It is then straightfor-
ward to show that

Fex ¼ l0qex|fflffl{zfflffl}
variable part

þWex þ k
2

dq
dy

� �2
 !ex

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
intrinsic part ðsurface tensionÞ

ð10Þ

Wex is independent of yM because Wþ ¼Wðq1Þ ¼Wðq2Þ ¼W�

ð¼ 0Þ. Thus, the sum of the last two terms is independent of the po-
sition of the interface and represents surface tension.

It is important to note that, in this analysis, the density pro-
file qðyÞ defines the interfacial transition zone. Moreover, a nat-
ural way (often used) to define the position of the discontinuous
interface yM is to choose the center of gravity of the density pro-
file: yM ¼ yq. This choice ensures that the discontinuous interface
is located within the interfacial zone, as illustrated in Fig. 4(a).
For this particular location of the interface, the surface tension
is exactly the surface-excess free energy (see Eq. (10)). This ex-
plains why this choice is generally made. It is also important
to point out that the variable q is used to define the simple
transformation F0ðqÞ !WðqÞ (see Eq. (9)) necessary to define
an intrinsic surface energy. This simple transformation will be
used in the analysis of interfacial properties in the case of
fluid/porous interfaces to determine intrinsic interfacial
quantities.

3. Interfacial zone and corresponding interfacial properties

When dealing with interfacial transport phenomena, the first is-
sue deals with the definition of the interfacial zone. In some cases,
this definition is unambiguous like for a liquid–vapor interface
where the density profile qðyÞ is naturally used. However, in other
cases, not all the physical properties vary exactly at the same loca-
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tions. For instance, at a fluid/porous interface, the typical porosity
and permeability profiles obtained by filtering numerical results
obtained at the microscopic scale [3] are represented in Fig. 7(a).
In this figure, it is clear that the zones where the permeability
and porosity profiles encounter strong variations are different. In
this case, the definition of the interfacial transition zone is more
ambiguous. However, intuitively, one would define the interfacial
zone where both variables encounter strong variations. This issue
is analyzed further in Section 3.2.

3.1. Interfacial properties: intrinsic and variable parts

Let us consider a physical variable w, whose asymptotic values
are different in each homogeneous region (e.g. the permeability).
Let g be a variable whose variation across the interfacial zone de-
fines the interfacial zone and let d be the thickness of this interfa-
cial zone. As discussed above, this function is not always trivial to
define because it cannot necessarily be one of the physical vari-
ables of the problem. The issue related to the construction of the
function gðyÞ is discussed in the next section. Here, we assume that
the profile gðyÞ has been determined and is thus considered as a gi-
ven. The function gðyÞ should be monotonic to ensure that it is a
bijection. Typical profiles wðyÞ and gðyÞ are illustrated in Fig. 5(a).
It is thus possible to define the function wðgÞ as illustrated in
Fig. 5(b).

From the function wðgÞ, it is now possible to define the function
weðgÞ as follows:

weðgÞ ¼ wðgÞ � w� þ wþ � w�

gþ � g�
ðg� g�Þ

� �
ð11Þ

This function, illustrated in Fig. 5(b), is the equivalent of the func-
tion WðqÞ in the van der Waals model of capillarity. By construc-
tion, the asymptotic values of we are equal (and actually nil), so
that wex

e is independent of yM. wex
e can thus be considered as an inter-

facial property. It is worth noting that it has the features that one
would expect for an interfacial property: (i) its value depends on
the profile of the physical variable w to which it is associated and
(ii) is associated to an interface defined through the function gðyÞ
that is supposed to be characteristic of the interfacial zone (and
thus of the discontinuous interface). In the following, we show that
both these properties can be made explicit in the expression for wex

e

(cf., Eq. (15)).
From Eq. (11), it is straightforward to show that

wexðyMÞ ¼ wex
e|{z}

Intrinsic

þwþ � w�

gþ � g�
gexðyMÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Variable

ð12Þ

This equation is the equivalent of Eq. (10) in the van der Waals
model of capillarity and shows that the only dependence on yM of
wex is actually the dependence of gex. Introducing the center of grav-
ity yg of the profile gðyÞ, one has
Fig. 5. Definition of the function weðgÞ. (
wexðyMÞ ¼ wex
e þ ðw

þ � w�ÞðyM � ygÞ ð13Þ

By construction, the function gðyÞ is such that it varies monotoni-
cally across the interfacial zone, and thus yg is necessarily located
within this interfacial zone, as illustrated in Fig. 5(a). In particular,
the natural choice for the position of the equivalent interface is
yM ¼ yg for which wex ¼ wex

e (see Eq. (13)). This means that, if the
discontinuous interface is located at yg, the surface-excess quantity
assigned to this interface is the intrinsic interfacial property wex

e .
For some physical problems, such as a laminar flow above a

homogeneous porous medium, it is known that it is important to
account for the variation of the jump parameter with the interface
position to recover the correct solutions in the adjacent homoge-
neous regions (namely the velocity profiles). However, for other
physical problems, the issue of the variation of the jump parameter
with the interface position does not seem to have been observed
and addressed in the literature. For instance, for turbulent flows
perpendicular to the interface, it is known that a singular pressure
drop has to be accounted for (see Section 4.2.1). This pressure drop
is generally considered as an interfacial property whose value is
never assumed to be dependent on the position of the interface.
However, from a modeling view point, no difference exists be-
tween these problems.

Eq. (13) shows that a surface-excess quantity is made of two
parts: an intrinsic part wex

e that is independent of the interface po-
sition yM and a variable part ðwþ � w�ÞðyM � ygÞ that depends line-
arly on yM. If the variable part is small compared to the intrinsic
part, then, whatever the interface position yM within the transition
zone, the value of the surface-excess quantity wex is almost equal to
its intrinsic part wex

e (see Fig. 6(a)). In this case, no significant var-
iation of the solution of the problem in the homogeneous regions is
observed as the interface position yM varies. However, when the
variable part of the surface-excess quantity is of the same order
of magnitude as its intrinsic part (see Fig. 6(b)), as the interface po-
sition yM varies within the interfacial transition zone, the solution
of the problem in the homogeneous regions may vary significantly
depending on the position of the discontinuous interface. In this
case, it is important to define the position of the interface and
the corresponding surface-excess quantity precisely to recover
the correct solution. Thus, Eq. (13) shows that the variable part
of wex is weak compared to its intrinsic part provided that the fol-
lowing condition is satisfied:

jwex
e j � jw

þ � w�jd ð14Þ

where d is the interface thickness. This condition is illustrated in
Fig. 6(a). In this case, the excess quantity wex can be considered as
an intrinsic interfacial property. We can also define a more qualita-
tive criterion: the variable part is weak if
ðmax jw� w�j � jwþ � w�jÞ.

From Eqs. (8) and (13), it is easy to show that

wex
e ¼ ðw

þ � w�Þðyg � ywÞ ð15Þ
a) wðyÞ and gðyÞ. (b) wðgÞ and weðgÞ.



a

b

Fig. 6. Illustration of the relative importance of the intrinsic and variable parts of a surface-excess quantity. The curve below the curve wðyÞ is
½w� þ ðwþ � w�ÞðgðyÞ � g�Þ=ðgþ � g�Þ� (cf., Eq. (11)). (a) Weak variable part. (b) Large variable part.
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so that the condition (14) can be written as follows:
jyg � ywj � d ð16Þ

The three geometrical parameters appearing in the above relation
can easily be determined from the profiles wðyÞ and gðyÞ.

Hitherto, we assumed that there exists a parameter g whose
profile across the interface is characteristic of the interfacial tran-
sition zone. We showed that this parameter is important in partic-
ular to define the function wðgÞ from which it is possible to define
the intrinsic surface-excess quantity wex

e . In the following section,
we address the issue of the determination of such a parameter g.

3.2. Dependence of an interfacial property on the definition of the
interfacial zone

In the case of a laminar flow above a fluid/porous interface, we
already pointed out that neither the porosity profile /ðyÞ nor the
permeability profile KðyÞ ¼ w�1ðyÞ can be considered to define
the interfacial zone. The interfacial zone should comprise the vari-
ations of both the porosity and permeability profiles. This choice is
rather natural. However, in other cases, as turbulent flows perpen-
dicular to a fluid/porous interface, the definition of the interfacial
zone is more clearly a modeling choice. Indeed, numerical simula-
tions using the k� � model show that the production of turbulent
kinetic energy due to the presence of the fluid/porous interface ex-
tends much further downstream than the interface thickness based
on the porosity profile (see Section 4.2). In this case, the modeling
choice is the following: either it is assumed that all this production
is an interfacial feature, or it can be assumed that only part of this
production is an interfacial feature and that the other part of the
production is due to other physical mechanisms such as relaxation
of turbulence that must be captured by the macroscopic model. For
instance, in [4], the latter choice is made because the characteristic
lengths of the homogeneous regions are of the same order of mag-
nitude as the ‘‘turbulence-relaxation” zone, which means that the
macroscopic model should capture the turbulence relaxation.
However, if the characteristic length scale of the outer regions
are much larger than the turbulence-relaxation zone, the macro-
scopic model should not be intended to capture this zone and
the turbulence relaxation should be considered as an interfacial
physical feature. This latter choice is made in Section 4.2. The
introduction of the function g makes this modeling choice explicit.
We thus propose to introduce a new variable g, whose profile
gðyÞ is such that its thickness of variation comprises all the vari-
ations of the physical variables that the physicist interprets as
interfacial characteristics. Hitherto, the only requirement to de-
fine the profile gðyÞ is its thickness of variation d. It is clear that
many profiles satisfy this requirement as illustrated in Fig. 7(b)
and the variable g is thus not unique: its choice is somewhat
arbitrary. However, Eq. (15) shows that the value of the interfa-
cial property wex

e depends very weakly on the choice of the func-
tion gðyÞ since it actually depends only on the value of its center
of gravity yg and not on its entire profile (once d has been cho-
sen). Therefore, for a given range of variation and for a particular
class of functions that are anti-symmetric from their inflexion
point, the center of gravity of these functions are equal. Since this
class is generally chosen for their simplicity, the center of gravity
yg is in practice almost unique (once the range of variation of the
interface indicator function and thus the modeling choice has
been made).
4. Examples of applications

In this section, the theoretical issues discussed in the previous
sections are applied to three different cases to determine, in each
case, the size of the interfacial zone and the corresponding intrinsic
and variable parts of the corresponding jump parameters.

4.1. Laminar flow parallel to the fluid/porous interface

For a laminar flow parallel to a fluid/porous interface,
Chandesris and Jamet [6] show that the relevant parameter that
appears in the expression for the boundary condition is ð/=KÞex.
In the following, we analyze the characteristics of this non-dimen-
sional parameter, that is denoted w and defined by

wðyÞ ¼ Kp
/ðyÞ
KðyÞ

Filtering numerical results obtained at the microscopic scale allows
to determine the porosity and permeability profiles shown in
Fig. 7(a) (e.g. [3]). It is worth mentioning that the interface thick-
ness is directly related to the filter size, which is, to some extent,
arbitrary. Here, the microscopic geometry is made of cubes regu-



Fig. 7. Profile gðyÞwhose variation defines the interfacial transition. It is such that its variations comprises the variations of both the porosity / and permeability K ¼ w�1. (a)
Example of profiles of physical quantities / and w and of an interface indicator function g. (b) Different interface indicator functions: g1ðyÞ is a hyperbolic tangent and g2ðyÞ is
a truncated polynomial of degree 3.

Fig. 8. Turbulent flow at the outlet of a porous medium made of parallel plates. (a)
Geometry of the microscopic problem. The k� � turbulence model is used with
Reh ¼ 5105. (b) Porosity and turbulent friction coefficient profiles at the mesoscopic
scale.
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larly spaced and we used the cellular filter [18]. Fig. 7(a) shows that
maxðw� w�Þ < ðw� � wþÞ. We showed in the previous analysis that,
with this qualitative condition, one should expect the results ob-
tained at the macroscopic scale to highly depend on the location
of the discontinuous interface.

Quantitatively, we choose the profile gðyÞ as a hyperbolic tan-
gent that varies from 0 to 1 and whose thickness of variation is
such that is comprises the thicknesses of variation of both pro-
files /ðyÞ and wðyÞ. The interfacial thickness is thus d ’ 0:2. From
the profiles /ðyÞ, wðyÞ and gðyÞ of Fig. 7(a), it is found that their
respective centers of gravity are y/ ¼ �0:09, yw ¼ �0:155 and
yg ¼ �0:175. Using Eq. (15), it is found that wex

e ¼ 0:015. We
showed that this value of the interfacial jump parameter should
be used when the interface is located at yM ¼ yg (see Eq. (13)).
Let us now study the variations of the jump parameter as the
position of the interface yM varies within the interfacial zone.
From Eq. (13), it is found that wex 2 ½�0:06; 0:09� as
yM 2 ½�0:275;�0:075�. This shows that the order of magnitude
of the variations of wex is the same as its value. This means that
the error on the value of the jump parameter should be expected
to be at least 100% as the position of the discontinuous interface
varies within the interfacial zone (this variation reaches 1000% if
the value at yM ¼ yg is considered as the reference). This explains
why large variations of the results at the macroscopic scale are
reported in the literature when the interface position is varied
[3,13,20,21]. This is corroborated by the fact that the condition
(16) is not satisfied in this case. Indeed, in the present example,
jwex

e j ¼ 0:015 whereas jwþ � w�jd ’ 0:15. The variable part of the
surface-excess quantity wex is thus 10 times larger than its
intrinsic part. Therefore, wex cannot be considered as an interfa-
cial property. Nevertheless, it must be emphasized that the mac-
roscopic model provides good results whatever the position of
the interface yM within the interfacial zone, provided that the
value of the jump parameter wex is modified accordingly; this
is shown in [6]. However, we consider that the best choice for
yM is yg and that the corresponding value of the jump parameter
is wex

e .

4.2. Turbulent flow perpendicular to the porous/fluid interface

4.2.1. Description of the problem
The momentum transfer at a porous/fluid interface is important

in many applications. In this study, we consider a porous medium
made of channels parallel to the flow as illustrated in Fig. 8(a). The
flow in each channel is turbulent and the k� � turbulence model
can be used to characterize the flow at the channel (i.e., micro-
scopic) scale. Here, we study the momentum transfer at the outlet
of the porous medium. Our goal is not to make a full description of
the flow at the porous/fluid interface and we restrict our analysis
to the momentum transfer; the transfer of turbulence characteris-
tics (turbulent kinetic energy and dissipation) is not studied here.
This choice is dictated by the fact that the momentum transfer
exhibits characteristics that can be considered as interfacial
properties.

At the macroscopic scale, the porous/fluid interface is modeled
as a discontinuity generally located right at the outlet of the chan-
nels. At this discontinuous interface, the pressure is modeled as
being discontinuous: this is the singular pressure drop that is gener-
ally modeled as follows (e.g. [10])

ptjyþM � ptjy�M ¼ �
1
2

qCshui2 ð17Þ

where hui is the volume-averaged velocity (in the y-direction), Cs is
a non-dimensional parameter called the singular pressure drop
coefficient and where pt is the total pressure defined by

pt ¼ ðhpif þ qhui2f Þ

where hpif and huif are the intrinsic volume-averaged pressure and
velocity, respectively (hwif ¼ hwi=/ for any physical quantity w).

The boundary condition (17) is associated to the following mac-
roscopic model:

�dpt

dy
¼

l
Kp
hui þ qCphui2 for y < yM

0 for y > yM

(
where Cp is a friction coefficient that depends on the Reynolds num-
ber and on the wall roughness (e.g. [12]).

Good engineering estimates have been established and for this
particular geometry, Cs ’ 1 [10]. No dependence of the singular
pressure drop coefficient Cs is ever reported and this property
should therefore be a genuine interfacial property.
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4.2.2. Analysis of the problem using an up-scaling approach
Let us consider a steady-state turbulent flow perpendicular to

the porous/fluid interface. Let us assume that this problem can
be considered as one-dimensional in the direction y perpendicular
to the interface. At the mesoscopic scale, the momentum balance
equation obtained by volume-averaging reads:

�dpt

dy
¼ l hui

KyðyÞ
þ qCðyÞu2 ð18Þ

where KyðyÞ is the permeability and CðyÞ is a friction coefficient (e.g.
[12]).

Eq. (18) can be made non-dimensional by using the hydraulic
diameter of the channels Dh as the characteristic length. One
finds:

� Dh

qhui2
dpt

dy|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Ctot

¼ 1
Reh

D2
h

Ky|fflfflffl{zfflfflffl}
Clam

þ C Dh|ffl{zffl}
Cturb

ð19Þ

where Reh is the Reynolds number

Reh ¼
quDh

l
The profile of Clam can be deduced from a laminar simulation and
the profile of ðdpt=dyÞ is easily accessible from a simulation at the
microscopic scale of the turbulent flow. From Eq. (19), it is then
straigthforward to deduce the profile of Cturb as shown in Fig. 8(b)
(the cellular filter has been used [18]).

For the case considered, Clam � Cturb so that Eq. (19) can be
approximated by

� Dh

qhui2
dpt

dy
¼ CturbðyÞ ð20Þ

This first order differential equation is valid at the mesoscopic scale
where the porous/fluid ‘‘interface” is a continuous transition zone.
The determination of the boundary condition at the equivalent dis-
continuous interface (macroscopic scale) can be deduced from the
line of reasoning presented in Section 2.1. It is found that the fol-
lowing boundary condition holds:

ptjyþM � ptjy�M ¼ �qhui2Cex
turbðyM=DhÞ ð21Þ

The boundary condition (21) is exactly the same as the classical sin-
gular pressure drop condition (17). Within the framework of the
present up-scaling approach, the classical singular pressure drop
coefficient Cs is therefore interpreted as the surface-excess friction
coefficient:

Cs ¼ 2Cex
turb ð22Þ

However, the surface-excess friction coefficient Cex
turb a priori de-

pends on the location of the discontinuous interface yM. Qualita-
tively, Fig. 8(b) shows that the profile of Cturb is such that
max jCturb � C�turbj � jC

þ
turb � C�turbj, so that we expect Cex

turb to depend
weakly on yM.

It is worth emphasizing that the previous qualitative discussion
is valid only if the entire variations of Cturb is considered as part of
the interfacial phenomena and is thus accounted for in Cex

turb. Now,
Fig. 8(b) shows that the thicknesses of the profiles /ðyÞ and CturbðyÞ
are different. Following the discussion of Section 3, we thus intro-
duce a function g whose profile comprises the variations of both /
and Cturb. As discussed in Section 3, the position of the equivalent
discontinuous interface is then naturally defined by yM ¼ yg. With
the profile of g shown in Fig. 8(b), it is found that ðyg=DhÞ ¼ 13:5,
whereas ðy/=DhÞ ¼ 10; thus, it is found that Cex

turbe ¼ 0:40 (cf., Eq.
(11)). The non-dimensional interfacial thickness is ðd=DhÞ ’ 7, so
that jðCþturb � C�turbÞ ðd=DhÞj ’ 0:193. This value is smaller than that
of Cex

turbe
and, according to the condition (16), Cex

turb has a rather weak
dependence on the position yM of the interface: �25% over the
interface thickness, a value that must be compared to the �500%

in the case of the laminar flow parallel to the fluid/porous inter-
face. Therefore, Cex

turb can be considered as an intrinsic interfacial
property, as expected.

Moreover, if the interface is located right at the outlet of the
channels, i.e., ðyM=DhÞ ¼ ðy/=DhÞ ¼ 10, one gets Cex

turb ¼ 0:49 and
the relation (22) is recovered exactly. This shows that our up-scal-
ing analysis allows to justify theoretically the classical singular
pressure drop ‘‘correlation” (17) and to determine the value of
the pressure drop coefficient. Furthermore, intuitively, the interfa-
cial zone would be defined rather by the porosity profile than by
the profile of g. The thickness of the porosity profile is ðd=DhÞ ¼ 2
and, in this case, the surface-excess friction coefficient Cex

turb (corre-
sponding to the singular pressure drop coefficient Cs) varies only
by �5% as the position of the interface varies over the interface
thickness defined by the porosity profile.
4.3. Heat transfer at a fluid/porous interface

Transfer processes at a fluid/porous interface very often involve
not only momentum transfer but also heat transfer. Here, we apply
our analysis to a steady-state conductive heat transfer problem. In
the literature, there is still no agreement on the boundary condi-
tions that should be applied at the fluid/porous interface. Alazmi
and Vafai [1] show that all the possible boundary conditions are
proposed in the literature: continuity or not of the heat flux com-
bined with continuity or not of the temperature at the interface, all
the combinations existing. Thus, this model is viewed as a model
problem for which results are available in the literature (e.g.
[15,22]).
4.3.1. Boundary conditions at the macroscopic scale
Let us consider a steady-state heat conduction problem at a

fluid/porous interface. For the sake of simplicity, we consider that
the heat flux is normal to the fluid/porous interface and we con-
sider a one-equation model. Thus, at the mesoscopic scale, we as-
sume that the mean temperature (simply denoted T) satisfies the
following equation:

d
dy

kðyÞdT
dy

� �
¼ 0 ð23Þ

where y is the coordinate normal to the interface and kðyÞ is the
thermal conductivity profile that varies continuously across the
interface and that reaches asymptotic values corresponding (i) to
the effective thermal conductivity of the homogeneous porous
medium, kp, and (ii) to the thermal conductivity of the fluid, kf .
By integration, one gets:

kðyÞdT
dy
¼ �u ð24Þ

where u is a constant that represents the heat flux across the
domain.

At the macroscopic scale, the temperature field is represented
by two bulk temperature fields: eT pðyÞ in the homogeneous porous
medium y < yM and eT fðyÞ in the homogeneous free fluid region
y > yM. Within each homogeneous region i 2 fp; fg, the macro-
scopic heat conduction equation reads

ki
deT i

dy
¼ �u ð25Þ

This equation is valid in particular at the discontinuous interface lo-
cated at yM. This thus shows that the following boundary condition
holds:
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�kp
deT p

dy

�����
yM

¼ �kf
deT f

dy

�����
yM

¼ u ð26Þ

This equation shows that the conductive heat flux is continuous at the
interface. Physically, this condition is coherent with the fact that the
system is in steady-state: no accumulation of energy can exist any-
where in the system, in particular at the interface.

To determine the boundary condition on the temperature, we
follow the line of reasoning presented with Section 2.1 in Eq.
(24) that can be rewritten as

dT
dy
¼ � u

kðyÞ ð27Þ

It is found that

eT f ðyMÞ � eT pðyMÞ ¼ �u
1
k

� �ex

ðyMÞ ð28Þ

Eq. (28) shows that, at the macroscopic scale, the temperature is a
priori discontinuous at the interface. From a physical point of view,
it is easier to rewrite Eq. (28) as follows:

u ¼ � 1
ð1=kÞex ðeT f � eT pÞðyMÞ ð29Þ

This writing clearly shows that ð1=kÞex is a heat resistance, whose
value can be determined from the profile kðyÞ only.

Thus, our analysis allows to determine (i) the form of the bound-
ary conditions and (ii) the value of the corresponding jump
parameter.

4.3.2. Assessment of the proposed model
To assess our analysis, we consider the case of a two-dimen-

sional porous medium made of cubes regularly spaced as shown
in Fig. 9(a). This geometry is such that the porosity of the homoge-
neous porous medium is / ¼ 5=9. The temperature field at the
microscopic scale is computed by imposing constant and uniform
Fig. 9. Conductive heat transfer problem at a fluid/porous interface at the microscopic
temperature profiles both at x ¼ 0. (c) Porosity and thermal conductivity profiles.
temperatures at the lower and upper boundaries of the domain.
The thermal conductivity of the solid phase ks is much larger than
that of the fluid phase kf : ks=kf ¼ 50. These values have been cho-
sen to be consistent with those considered in [22].

The mesoscopic temperature field TðyÞ is obtained by volume-
averaging the microscopic field using the cellular filter (see
Fig. 9(b)). It is important to point out that, unlike in [22], the filter
used is identical is the entire domain, i.e., in the homogeneous por-
ous region, in the free fluid region and across the interface. From
this temperature field, it is possible to determine the thermal con-
ductivity profile kðyÞ; this is shown in Fig. 9(c).

A first important characteristic of the thermal conductivity
profile is that its zone of variation is the same as the zone of
variation of the porosity (see Fig. 9(c)). This means that, in this
case, the porosity profile is indeed representative of the interfa-
cial zone; thus g ¼ /. Another important characteristic is that
the thermal conductivity varies monotonically across the interfa-
cial zone. We thus expect the variable part of ð1=kÞex to be larger
than its intrinsic part. To confirm this feature, we apply the con-
dition (16). From the profiles /ðyÞ and ð1=kÞðyÞ, it is found that
d ¼ 5, y/ ¼ �0:4 and y1=k ¼ �0:5; thus, the condition (16) is not
satisfied.

To assess our analysis further, we compare the mesoscopic tem-
perature profile obtained by volume-averaging to the macroscopic
temperature profile obtained by imposing the derived boundary
condition (28). We choose to locate the interface at the center of
gravity of the profile ð1=kÞðyÞ where ð1=kÞex ¼ 0. The motivation
for this particular choice is twofold: (i) this particular position is lo-
cated within the interfacial zone and (ii) at this particular location,
the macroscopic temperature is continuous (see Eq. (28)). The
macroscopic temperature profile found eT ðyÞ is plotted in
Fig. 10(a). This figure shows that the agreement with the meso-
scopic temperature profile is excellent. However, if the interface
is located at the boundary of the upper row of cubes, i.e.,
yM ¼ �1, and if the temperature is imposed to be still continuous
at this location, the corresponding macroscopic profile is very dif-
and mesoscopic scales. (a) Microscopic geometry. (b) Microscopic and mesoscopic



Fig. 10. Macroscopic temperature profile eT ðyÞ for different locations yM of the equivalent discontinuous interface and for different forms of the boundary condition. (a)
Interface located at the center of gravity of the profile ð1=kÞðyÞ. (b) Interface located at the boundary of the upper row of cubes with continuity of the temperature. (c) Interface
located at the boundary of the upper row of cubes with temperature jump given by Eq. (28).
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ferent from the mesoscopic temperature profile as shown in
Fig. 10(b). Nevertheless, if, still at this location, the temperature
jump boundary condition (28) is imposed with ð1=kÞex ¼
ðð1=kÞþ � ð1=kÞ�ÞðyM � y1=kÞ, the correct macroscopic temperature
profile is recovered as shown in Fig. 10(c). These results show
the consistence of our approach and analysis.

5. Discussion

It must be emphasized that, in our analysis, the intrinsic part of
a surface quantity depends directly on the introduction of the var-
iable g, which is arbitrary. Thus, the value of the intrinsic part is
not physically intrinsic because it depends on g that is not a phys-
ical variable. Nevertheless, this dependence is rather weak because
it depends only on the center of gravity of the profile gðyÞ, which is
located at about the center of the interfacial zone.

The very reason of this arbitrariness comes from the fact that, in
general, if it is possible to define an interfacial thickness with little
arbitrariness, it is not possible to exhibit a physical variable that
varies monotonically across this interfacial region. It must be no-
ticed that this issue, which exists for the description of transfers
at a fluid/porous interface, does not exist in the van der Waals’
model of capillarity. Indeed, in this case, all the fluid properties de-
pend on the fluid density q that does vary monotonically across the
liquid/vapor interface. In this case, no arbitrariness exists because
the physical variable q defines the interfacial region and all the
other fluid properties depend on q. In the case of a fluid/porous
interface, no physical variable varies monotonically across the
whole interfacial region. This is the very reason why we have intro-
duced an auxiliary function g.

However, it must be emphasized that our analysis allows to put
into light the existence of two different parts in a surface-excess
quantity: a variable and an intrinsic part. It must be acknowledged
that the intrinsic part still exhibits some arbitrariness, but this
arbitrariness is limited compared to the common confusion regard-
ing the interpretation of the jump coefficients and in particular
whether it should or not be interpreted as an intrinsic quantity.
Very often, they are implicitly interpreted as intrinsic quantities,
whereas we show that it should not be the case.

At this stage of the analysis, we believe that, for fluid/porous
interfaces, it is not possible to avoid the above mentioned arbitrar-
iness. According to our current understanding, the only possibility
would be to exhibit a physical variable that varies monotonically in
the whole interfacial region. However, we have not been able to
exhibit such a function.

In this paper, we show that, in general, the value of a jump
coefficient, interpreted as a surface-excess quantity, varies with
the position of the discontinuous interface where boundary con-
ditions are applied. We show in particular that, if this variable
part is not accounted for, the outer solutions are not recovered
(see Section 4.3). However, it must be emphasized that, under
certain length-scale constraints, i.e., in cases where the outer
length is sufficiently large compared to the interfacial zone, the
exact location of the interface might not be very important to re-
cover a good approximation of the outer solution. To define the
associated length-scale constraint, one must compare the varia-
tions of the outer solution over the outer length with the varia-
tion of the outer solution due to the variation of the jump
coefficient. If the former is larger than the latter, then the vari-
able part of the jump coefficient can be neglected. This is illus-
trated in Fig. 10 on the heat conduction problem. If the outer
homogeneous region on the left is very large, the temperature
difference between the outer boundary and the interface would
be very large. In this case, the temperature jump at the interface
is negligible. However, the definition of this constraint depends
on the physical problem studied and turns out to be difficult
to determine for any problem. Moreover, in particularly impor-
tant problems, such as the Beavers and Joseph experiments [2],
the size of the outer domains is such that the corresponding
length-scale constraint is not satisfied: the ratio of the outer
length and the interfacial thickness varies from 10 to 1. Thus
the interface position has a large impact on the outer solutions.

It is worth emphasizing that our analysis is general and can be
applied without any length-scale constraint, provided that the var-
iable part of the surface-excess quantity is accounted for.

6. Conclusion

In this paper, we analyze the physical nature of the jump coeffi-
cients that appear in the expression for boundary conditions at a
fluid/porous interface. Our analysis is based on a two-step up-scaling
approach of transport phenomena in the interfacial region. In this
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framework, jump coefficients are interpreted as surface-excess
quantities. We then show that the value of a surface-excess quantity
depends on the position of the interface and that this dependence is
linear. This important result explains such a dependence observed in
the literature. Despite this dependence, we show that it is possible to
decompose a surface-excess quantity into an intrinsic part and a var-
iable part. We then exhibit a simple criterion to determine a priori
the intrinsic interfacial nature of a jump coefficient (Eq. (16)). This
analysis requires the introduction of a variable, g, whose variation
across the interface defines the interfacial zone. The best choice for
the position of the discontinuous interface is then the center of grav-
ity of the profile gðyÞ.

Our theoretical analysis is successfully assessed on three differ-
ent problems: laminar and turbulent flows and heat transfer at a
fluid/porous interface. In each case, the boundary conditions are
derived and the intrinsic nature of the jump coefficients is
analyzed.

We believe that the analysis presented in this paper is general
enough to be applied to any transport phenomenon at a fluid/por-
ous interface, provided that the effective transport coefficients are
known at the mesoscopic scale.
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